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ABSTRACT 

Pulse Detonation Engines (PDE) are seen to be the next generation propulsion 

systems due to enhanced thermodynamic efficiencies based on the Humphrey cycle. One 

of the limitations in fielding practical designs has been attributed to tube diameters not 

exceeding 5 inches as the shock wave takes a long run distance for transition to 

detonation, thus potentially affecting specific thrust. Novel methods via imploding 

detonations were investigated to remove such limitations. During the study, a practical 

computational cell size was first determined so as to capture the required physics for 

transient detonation wave propagation using a Hydrogen-Air test case. Through a grid 

sensitivity analysis, one-quarter of the induction length was found sufficient to capture 

the experimentally observed initial wave transients. Test case models utilizing axi-

symmetric head-on implosions were studied in order to understand how the implosion 

process reinforces a detonation wave as it expands. This in effect creates localized 

overdriven regions, which maintains the transition process to full detonation.  A 

parametric study was also performed to determine the extent of diameter increase and it 

was found that the detonations could be supported with no change in run distance even 

when the tube diameter exceeds 5 inches.  
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I. INTRODUCTION  

A. MOTIVATION 

Pulse Detonation Engines (PDEs) have tremendous potential to replace current 

state-of-the art propulsion systems, which can operate up to supersonic cruise speeds for 

missiles, fighter jets, unmanned aerial vehicles, etc. Much of this potential stems from the 

fact that PDEs operates on the detonation mode of combustion, which has a higher 

thermodynamic efficiency than current propulsion systems based upon constant pressure. 

However, no practical design has been fielded to date and one key limitation is due to the 

fact that detonation can only be supported in main detonation chambers of up to five 

inches in diameter without requiring unreasonably long tube lengths. This impairs the 

specific thrust substantially as multiple tubes are required to generate thrust required by a 

typical cruise missile. As a result, thrust density decreases and potential cross flow 

mixing problems from the efflux of five separate tubes reduce the efficiency even further. 

To increase the diameter of the main tube and yet maintain the tube length, simulation 

studies involving novel means using shock-focusing techniques via toroidal wave 

implosion first investigated by Jackson et al. [1] is conducted. This reinforces the wave 

propagation process and effectively shortens the deflagration-to-detonation run distance 

such that a detonation wave can be supported for larger diameter tubes. 

B. BACKGROUND 

Pulse Detonation Engines (PDEs) operates on the detonation mode of 

combustion, which can be best approximated by the Humphrey (Constant-Volume) cycle 

in contrast to the Brayton (Constant-Pressure) cycle for gas turbine engines, as illustrated 

in Figure 1. The amount of work done (Pressure-Volume) by the Humphrey cycle as heat 

energy is introduced under constant volume conditions from 2 to 3 is much greater as 

compared to the Brayton cycle under constant pressure conditions, resulting in higher 

thermodynamic efficiencies. 
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Figure 1. Pressure-volume plot based on Humphrey cycle [From 2] 

 

In order to create detonation shock waves that can propagate at supersonic speeds, 

a finite run length distance is required for such transitions from deflagration-to-

detonation known as a DDT process for a typical confined tube configuration. As tube 

diameters become larger, a longer DDT run distance is required in order to support the 

transition to a fully developed detonation wave. This limitation results in multiple tube 

configurations for a practical cruise missile design. 

A novel method is being proposed using shock focusing techniques via toroidal 

wave implosion such that the shock wave propagation in the main shock tube is 

reinforced and consequently, the resulting pressures generated are much higher than the 

Chapman-Jouguet (C-J) conditions defined for a fully-developed steady state wave. The 

extreme high pressure environment favors much higher reaction rates for the fuel-

oxidizer reactant mixtures and this will allow for a near direct generation of a detonation 

(without the need for DDT) as the fuel-air mixtures react violently in order to support the 

shock front. 

In order to explore such implosion concepts accurately, it is imperative to capture 

the full physics and chemical kinetics behind such complex and highly transient fluid 

flows governing the shock wave behavior followed by chemical reactions based on a 

reduced set of chemical reaction mechanisms. Simulations of such complex flow field 
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behavior are only achievable via a practical computational cell mesh topology that is 

sufficiently small enough on the order of the induction length to describe the reaction 

zone behind the propagating shock front. Validation of such simulation studies based on 

well known reduced kinetic models for Hydrogen-Air mixtures can be conducted via 

comparison with experimental data available in the literature. 

 The required computational cell size for such high fidelity simulations can then 

be further extended to generic hydrocarbon fuel-air mixtures such as acetylene-air, 

ethylene-air, propane-air and even JP10-air mixtures based on the required length of the 

induction zone supporting the shock front. Utilizing the practical computational cell size, 

further analysis for a simulation case model based on an axi-symmetric head-on toroidal 

implosion can be conducted and analyzed for similar configuration types. 

Parametric studies are then performed to investigate the extent of the increase in 

tube diameters for a fixed practical propulsion tube length based on the test case model.  

C. OBJECTIVES 

The research objective is to enhance current PDE applications by carrying out 

simulation studies to investigate the extent of possible combustor diameter increase using 

shock focusing techniques via toroidal implosions with modified PDE tube 

configurations without introducing the need for longer tube lengths. 

Simulation studies were conducted on the CFD++ computational platform and 

carried out via the following order: 

i) Determination of a practical computational cell size for high fidelity 

capturing of detonation wave propagation in a simple PDE tube 

configuration based on well known Hydrogen-Air reduced reaction 

models  

ii) Simulation and analysis of head-on axi-symmetric toroidal implosions for 

Hydrogen-Air mixture based on the required computational cell size 
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iii) Performance of parametric studies used to evaluate the extent of the 

diameter increase for a fixed practical tube length using toroidal implosion 

based on an enhanced PDE design configuration 
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II. THEORY 

A. PULSE DETONATION ENGINES 

Pulse Detonation Engines are essentially intermittent propulsion systems where 

thrust is provided by repetitive triggering of detonation waves propagating at supersonic 

speeds in a long tube enclosed at the head end. The process takes place under nearly 

constant volume conditions and its operating cycle can be effectively described by three 

distinct phases. The first phase consists of introducing a reactive component such as 

hydrogen fuel and an oxidizing component such as air into the main combustion 

chamber. Initiation of the fuel-air mixture near the enclosed portion of the chamber 

occurs in the second phase via an energy sparking source. A high pressure detonation 

wave as a result of the initiation ensues in the third phase. The remaining fuel-air mixture 

in the tube is compressed in a thin reaction zone by the traversing detonation wave and 

reacts violently under extreme high pressure conditions to feed the leading edge of the 

shock front followed by an expansion zone of detonation products. The last phase 

consists of effectively purging the gaseous products out of the main chamber and the 

entire cycle repeats. Thrust is produced as the gaseous products exit out of the main 

propulsion tube. Figures 2 to 4 describes each phase of a PDE cycle. 

 

Figure 2. PDE cycle – fill phase 
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Figure 3. PDE cycle – fire phase 

 

 

Figure 4. PDE cycle – purge phase 

 

B. DETONATION THEORY 

Detonation or deflagration by itself is an exothermic reaction caused by transition 

of unstable reactive molecular reactions to a stable state. The amount of energy required 

to trigger such reactions is known as the Activation Energy. When such energy levels are 

reached, the original reactant molecules come apart and re-arrange themselves back into a 

more stable state producing shock waves as a result of a sudden sharp increase in 

thermodynamic properties due to the exothermic reaction.  

Combustion of fuel-air mixtures produces either a deflagration or detonation 

wave. Properties such as pressure (P), temperature (T) and density (ρ) of the reactant and 

products across the combustion wave front change discontinuously. Figure 5 illustrates 

the change across such properties for a constant area duct where the flame front is 

envisioned as stationary. 
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Figure 5. One-dimensional combustion wave model [From 3] 

 

In order to relate properties across a one-dimensional combustion wave front, the 

corresponding mass conservation, momentum conservation, energy conservation and 

equation of state must be invoked. For the state equation, the ideal gas law serves as a 

good approximation to model the properties of the gases during combustion. These 

relations assume that the combustion wave is steady state and the process across the wave 

front is adiabatic and remain in chemical and thermodynamic equilibrium [3]. 

Mass Conservation: 

2211 uu ρρ =          (1) 

Momentum Conservation: 

2
222

2
111 uPuP ρρ +=+        (2) 

Energy Conservation: 

22

2
2

2

2
1

1
uTCquTC pp +=++        (3) 

Equation of State (Ideal Gas Law): 

RTP ρ=          (4) 

 Specific heat relation: 

RC p 1−
=
γ
γ          (5) 
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where: 

 R  = Gas Constant 

 q  = Specific heat energy added to the system via the combustion process 

 pC = Specific heat at constant pressure 

 γ  = Ratio of specific heats 

In order to gain further insight into all possible states that the burned gas products 

can exist, a Hugoniot relation must be determined. A Hugoniot curve is basically a plot of 

pressure ( 2P ) versus specific volume (
2

1
ρ

) corresponding to the burned gas products for 

a fixed heat release mass, q and the relation can be derived by combining equations (2), 

(3) and (4) to obtain the given Hugoniot relation. 

 Hugoniot Relation: 

( ) qPPPP
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

− 21
12

1

1

2

2 11
2
1

1 ρρρργ
γ      (6) 

The slope of the Hugoniot relation indicates the velocity of the detonation wave. The 

Rayleigh Line relation is obtained by combining equations (1) and (2). 

 Rayleigh Line Relation: 

21

122
1

2
1 11

ρρ

ρ
−

−
=

PPu         (7) 

The Hugoniot curve is illustrated in Figure 6. From the curve, the origin A 

represents the pressure ( 1P ) and specific volume (
1

1
ρ

) of the unburned reactants. The 

two tangent points intersecting origin A are defined as upper and lower Chapman-Jouget 

(C-J) points. From the Hugoniot curve, the C-J points can be obtained via the slope of the 

Hugoniot curve as follows: 
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C-J relation: 

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

⎟
⎠
⎞⎜

⎝
⎛

12

12

2

2

111
ρρρ

PP

d

dP        (8) 

The C-J relation can also be obtained via differentiation of equation (6) with respect to 
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The speed of sound, c2 for the burned products is given by the following relation: 

22 RTc γ=          (10) 

Equating (8) and (9) along with the Rayleigh-Line relation in (7) gives the following: 

2
2

2

22
2 cPu ==

ρ
γ          (11) 

This implies that the particle velocity of the gases leaving the detonation wave are 

traveling at sonic velocity.  In a shock-frame of reference, this means that the product 

gases leaving the detonation wave are leaving at the sonic velocity of the products.  

Therefore equilibrating the amount of energy that reaches the shock front from the 

chemical reactions and thus allowing a sustained steady-state detonation wave to 

propagate at what is known as the Chapman-Jouguet velocity.  Should this not be the 

case, detonation would undergo an unsteady process that will most likely asymptote to 

the C-J condition. 

Five distinct regions can be infered from the Hugioniot curve, however, not all 

regions are physically valid. Table 1 describes the validity of the states in these regions.  
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Figure 6. Hugoniot curve for fuel-air mixtures [From 3] 

 

Table 1. Physical validity of states on the Hugoniot curve 

Region Remarks 

I  Region I is defined as transient states where the combustion waves propagate 

as strong overdriven detonations above the upper C-J point. Under such 

conditions, the lead shock front travels at a much faster rate than the product 

gases resulting in a larger induction zone. The induction zone will eventually 

increase to such an extent such that any heat release generated by the 

combustion of the fuel-oxidizer reactants will not affect the lead shock front, 

thus slowing it down. As such, strong detonation waves will always decay 

back to the upper C-J point. 

II Region II is defined as transient states where the combustion waves propagate 

 

P1 
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Region Remarks 

as weak detonations below the upper C-J point. Under such conditions, the 

velocity of the gas products travels at a faster rate than the lead shock front and 

as such the spatial extent of the induction zone decreases. The same heat 

release energy generated from the combustion reaction starts to have an 

increasing effect on the lead shock front due to the decreasing induction zone 

length and the additional heat release supplied starts to accelerate the lead 

shock front away from the reaction zone back towards the upper C-J point.  

III Region III represents states where the combustion waves propagate as weak 

deflagrations. They exist as expansion or rarefaction waves where the density 

of the burned products is lower than that corresponding to the reactants. They 

are observed experimentally during the initial deflagration-to-detonation 

process at ignition and the gas velocity relative to the wave front is accelerated 

from lower to higher sub-sonic speeds. 

IV Region IV represents states where the combustion waves propagate as strong 

deflagration waves. These are physically impossible states where the gas 

velocity relative to the wave front must be accelerated from sub-sonic to super-

sonic speeds, which are forbidden for a wave structure propagating in a 

constant area duct. 

V The solution states for region V is mathematically impossible. The solution to 

the Rayleigh-Line equation (7) results in an imaginary number for u1. 

 

From the analysis given in Table 1, the physically validity of regions 1 and 3 are 

most likely observed during a detonation process and this has been confirmed in shock 

tube experiments as well [3].  

C. DEFLAGRATION-TO-DETONATION TRANSITION 

A detonation wave requires a finite run distance for the shock wave to transit from 

a deflagration to a detonation wave known as DDT. During initiation of a fuel-oxidizer 
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mixture in a PDE tube, a deflagration leading shock wave ensues and propagates at a 

wave speed characteristic of the reactant temperature conditions followed by a series of 

compression waves produced by the combustion process. The compression waves further 

heats up the region behind the leading shock wave creating localized high temperature 

regions and consequently increase the velocity of the compression waves. The 

compression waves eventually catch up with the leading wave front coalescing into a 

detonation wave [3]. The tube confinement as well as the turbulence generated by the 

motion of the product gases from the detonation shock front leads to the onset of “an 

explosion in an explosion,” which produces an overdriven forward shock wave into the 

unburned reactants known as superdetonation and an opposite shock wave moving into 

the gas products known as retonation with transverse oscillating shocks in between. This 

finally leads to a self-sustained steady state detonation wave propagating at C-J velocity. 

Figure 7 illustrates this phenomenon.  

 

Figure 7. Transition process to superdetonation [From 3] 

  

The DDT run distance is impractically long for current applications and therefore 

obstacles such as swept rams or spirals are used in PDE configurations to shorten the 

DDT length via turbulent flow regimes to promote higher chemical reaction kinetics. 

However, generation of high pressure losses as a consequence of such obstacles degrades 

the propulsive efficiency tremendously. 
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D. DETONATION WAVE STRUCTURE 

Sustainment of the detonation wave can be described simply by the one-

dimensional model developed independently by Zeldovich, von Neumann and Döring 

[3]. This is known as the ZND model illustrated in Figure 8. The model consists of a 

shock wave moving at detonation velocity followed by a rarefaction region. The shock 

wave region is extremely thin in the order of a few mean free paths thick of molecules; 

therefore limited reactions occur in this region. Across the shock region, there is a sharp 

almost discontinuous increase of pressure, temperature and density. The rarefaction 

region is comparatively much thicker usually on the order of 1 cm and consists of an 

induction and reaction zone. The thermodynamic properties in the induction zone 

immediately behind the shock front remain almost constant. Reaction rates as a function 

of temperature begin to increase slowly. Once the induction period is completed, 

temperatures start to climb sharply with extremely high heat release energies caused by 

the violent reactions of the fuel-oxidizer mixture defined by the reaction zone, which 

sustains the propagation of the shock wave. The gasdynamic properties reach their 

equilibrium states at the end of the reaction zone. Therefore, the induction period or 

induction zone is extremely important in order to capture the correct thermodynamic 

properties of temperature, pressure and density for an accurate simulation of a detonation 

wave.  
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Figure 8. Thermodynamic properties of the ZND model [From 3] 

 

E. DETONATION CELL WIDTH 

Detonation cell widths are multi-dimensional detonation wave effects 

experimentally measured by soot foil imprint techniques where a detonation wave created 

by a typical fuel-air mixture leaves a fish scale pattern signature on soot coated aluminum 

sheet lined on the inner surface of a shock tube. Figure 9 illustrates a typical soot foil 

imprint produced by a detonating shock wave from JP10-Air mixture where JP10 is a 

liquid hydrocarbon fuel (C10H16). The non-planar detonation shock front induced by the 

energy release arising from the combustion of the fuel-oxidizer mixture is a resultant of 

the Mach stem, incident shock and reflected shock, which is a necessary condition for a 

self-sustained detonation front. The interaction of the three waves produces a shear 

discontinuity known as the triple point. Figure 10 illustrates such a detonation front 

structure. As a result, the waves propagate down the tube leaving the characteristic fish 

scale pattern signature. The transverse distance between each fish scale is known as the 

cell width, which is regarded as a fundamental parameter to characterize the detonability 

of a gaseous fuel-air mixture. A more reactive fuel such as hydrogen as compared to a 
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typical hydrocarbon fuel such as ethylene (C2H4) will correspondingly have a smaller 

detonation cell width. Similarly, reaction of hydrogen in the presence of a less reactive 

oxidizer such as air with respect to pure oxygen will have larger cell widths. 

 

 
Figure 9 Soot foil imprint produced by JP10-Air detonation wave [From 4] 

 

 
Figure 10. Detonation front structure with triple point [From 4] 

 

Detonation Cell Width 
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F. REDUCED CHEMICAL KINETIC REACTION MODELS 

Chemical kinetics governs the rate at which the species concentration of a fuel-

oxidizer mixture is transformed into its product species and vice versa depending on 

pressure and temperature reaction conditions as well as complexity of the involved 

species. The dependence of the reaction rate constant, k as a function of temperature, T 

can be inferred from the Arrhenius Equation [3]. 

Arrhenius Equation: 

⎟
⎠
⎞

⎜
⎝
⎛−=

RT
E

ATk an exp         (12) 

The pre-exponential parameter A describes the frequency of collisions for the species that 

result in a reaction as well as the preferred orientation of the molecular species that favor 

a reaction. The exponent n expresses the temperature dependence of the pre-exponential 

parameter. Activation energy, Ea defines the minimum amount of energy required for a 

reaction to occur and R is the universal gas constant. 

 While it is desired to include a detailed chemical reaction model governing a 

reactive fuel-oxidizer mixture, which can involve up to hundreds of reactions and species 

under all operating conditions, it is computationally demanding especially for complex 

flows involving cellular detonation wave structures even for super-computers of today. 

To ensure that computational times required for CFD simulations to be tractable under 

reasonable time frames, it is imperative to reduce detailed chemical mechanisms into 

simpler models where only certain chemical reactions are significant for example during 

a detonation process and yet able to capture the physics of the shock wave propagation 

with correct heat release rates in the reaction zone. This can be done via approximation of 

individual reactions to be in equilibrium or some of the species concentration can be 

assumed to be in quasi-steady state [5].    

G. EQUIVALENCE RATIO OF FUEL-OXIDIZER MIXTURE 

Typically, combustion of fuel-oxidizer mixtures is specified in terms of the 

equivalence ratio, φ. The equivalence ratio is independent of the mass, m or the number 
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of moles, n that is used to characterize the proportion of the fuel to oxidizer mixture. It is 

defined as the ratio of the fuel-oxidizer ratio to the stoichiometric fuel-oxidizer ratio and 

can be mathematically represented as follows: 

( ) ( )
tricstoichiomeoxidizerfuel

oxidizerfuel

tricstoichiomeoxidizerfuel

oxidizerfuel

nn
nn

mm
mm

==φ    (13) 

The composition and thermodynamic properties of fuel-oxidizer mixtures during 

combustion/detonation are dependent on the equivalence ratio and consequently the 

detonation cell width if the wave propagates at supersonic speeds. A ratio greater than 1 

would imply excess fuel or fuel rich mixtures than would be required for a stoichiometric 

reaction and conversely a ratio less than 1 would imply excess oxidizer or fuel lean 

mixtures. 

H. COMPUTATIONAL NUMERICAL SCHEMES 

In computational fluid dynamics, there are primarily two main schemes, explicit 

and implicit schemes implemented in order to discretize the resulting differential 

equations and resolve the required flow field. Explicit or forward differencing schemes 

suffer from conditional stability issues where a solution may blow up if the specified time 

step is too large and/or the computational cell size is too small. Implicit schemes are 

inherently stable as the forward solution is coupled together with the previous solution 

and hence will not generate an output that will increase to infinitely large values. 

Schemes of such types will be employed as the main scheme in study for simulation of 

detonation waves in PDE configurations. Figure 11 show a computational molecule based 

on an implicit scheme where p defines the spatial grid points in space and q defines the 

temporal grid points on an x-t diagram. 



 18

 

Figure 11. Computational molecule based on implicit scheme 

 

For a mathematical representation of an implicit scheme, consider a simple one-

dimensional scalar equation: 
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Discretization of the above equation based on an implicit scheme results in the following: 
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x
ta

Δ
Δ is also known as the Courant-Fredrichs-Lewy or CFL number. Numerical solution of 

the resulting flow field can be specified either in terms of a fixed time step or the CFL 

number where the time step is computed based on the computational mesh size. For a 

sufficiently small fixed time step, specification of the CFL number will result in faster 

numerical computations [6].  
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III. SIMULATION SETUP (GRID SENSITIVITY) 

A. WAVE IMPLOSION 

Wave implosion is a technique that focuses a shock front to generate a region of 

high pressure and temperature gases due to adiabatic compression of gas products as it 

flows into a region of decreasing area [1]. As a result, extremely high energy density 

localized regions are formed due to interacting compression waves and this raises the 

pressure of a typical fuel-oxidizer mixture above the C-J pressure, resulting in an 

overdriven detonation wave. Figure 12 illustrates an example of a collapsing toroidal 

wave front implosion. This concept is being explored to increase specific thrust of PDEs 

by harnessing the extremely high pressures as a result of the overdriven imploding shock 

front to increase the maximum diameter for a DDT process assuming a reasonable run 

distance required for transition to detonation. A commercial Computational Fluid 

Dynamics (CFD) platform used to perform simulation studies on the implosion concepts 

for PDEs is CFD++ from Metacomp Technologies. It is widely used by commercial 

companies such as General Electric and Air Force Research Laboratories (AFRL) as a 

computational tool for development on proof of concept PDEs and also supported by 

Office of Naval Research (ONR). 

 

Figure 12. Collapsible toroidal wave implosion [From 1] 
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B. HIGH FIDELITY SIMULATIONS (GRID SENSITIVITY ANALYSIS) 

In order to explore implosion concepts, high fidelity computational fluid dynamic 

(CFD) models based on reduced chemical kinetic mechanisms are pertinent for accurate 

and robust simulation to describe and analyze the physics of detonation wave propagation 

in pulse detonation engines. High fidelity models are sensitive to the induction length for 

a specific fuel-oxidizer mixture such that the transient flow kinetics and shock physics 

can be accurately captured as shown by the ZND model in the previous section. 

Using a test case model for Hydrogen-Air (H2-Air) mixtures, a grid sensitivity 

analysis was performed on a typical PDE tube configuration using a kinetic reaction 

model based on a reduced set of 18 reactions and 9 species [7] and [8] highlighted in 

Table 2.  

 

Table 2. Reduced chemical kinetic mechanism for H2-Air mixture 

Number Reaction Aa na Ea
a
 

1 H2 + O2 ↔ 2OH 0.17e11 0 0.2015e9 
2 O2 + H ↔ 2OH 0.142e12 0 0.6866e8 
3 H2 + OH ↔ H2O + H 0.316e5 1.8 0.12686e8 
4 H2 + O ↔ OH + H 0.207e12 0 0.57568e8 
5 2OH ↔ H2O + O 0.55e11 0 0.29307e8 
6 OH + H + M ↔ H2O + M 0.2211e17 -2 0 
7 H + H + M ↔ H2 0.653e12 -1 0 
8 O2 + H + M ↔ HO2 + M 0.32e13 -1 0 
9 OH + HO2 ↔ O2 + H2O 0.5e11 0 0.4186e7 
10 H + HO2 ↔ H2 + O2 0.253e11 0 0.29307e7 
11 H + HO2 ↔ 2OH 0.199e12 0 0.7536e7 
12 O + HO2 ↔ O2 + OH 0.5e11 0 0.4186e7 
13 2HO2 ↔ O2 + H2O2 0.199e10 0 0 
14 H2 + HO2 ↔ H + H2O2 0.301e9 0 0.7829e8 
15 OH + H2O2 ↔ H + H2O2 0.102e11 0 0.7954e7 
16 H + H2O2 ↔ H2O + OH 0.5e12 0 0.4186e8 
17 O + H2O2 ↔ OH + HO2 0.199e11 0 0.247e8 
18 H2O2 + M ↔ 2OH + M 0.121e15 0 0.19049e9 
a  in units of kmol,m3, s, K and J/kmol 
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Nitrogen and carbon chemistry reactions were excluded in the reaction model so 

as to optimize the required computational effort. Only slight differences in CJ detonation 

wave speeds and temperatures for typical hydrocarbon fuel-air mixtures on the order of 

6% to 9% respectively [9] were observed as compared to the full kinetic model 

comprising the full nitrogen and carbon chemistry for Jet A/Air mixture, as shown in 

Figures 13 and 14, which was deemed as acceptable. 

 

Figure 13. Comparison of detonation velocities for Jet A/Air mixture [From 9] 

 

 
Figure 14. Comparison of C-J temperatures for Jet A/Air mixtures [From 9] 

with N2 chemistry 

without N2 chemistry 

with N2 chemistry 

without N2 chemistry 
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C. DETONATION CELL WIDTH OF H2-AIR FOR DIFFERENT 
EQUIVALENCE RATIOS 

Determination of the computational mesh size for the model was focused mainly 

on stoichiometric H2-Air mixtures. This is because it is well defined in literature that 

experimental results at which detonation cell width occurs at a minimum corresponds to 

φ  = 1 as indicated in Figure 15 referenced from [10], [11], [12] and [13] for a H2-Air 

mixture. The induction length is in turn proportional to the detonation cell width and the 

relation is typically a linear one with a proportionality constant for different fuel-oxidizer 

mixtures. Therefore, this would present the baseline mesh size required for accurate 

simulation of detonation shock physics. 

 

 
Figure 15.  Graph of detonation cell width vs equivalence ratio for H2-Air 

mixture [From 14] 

 

Cell Width, λ = 8 mm

At initial T = 293K, P = 101.3 kPa10

At initial T = 298K, P = 101.3 kPa11

At initial T = 300K, P = 100 kPa12

At initial T = 293K, P = 82.7 kPa13
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D. PDE CONFIGURATION 

For the grid sensitivity analysis, a 2-D axisymmetric cylinder model was 

generated on the Solid Works platform with the dimensions outlined in Figure 16. A 

detonation wave consisting of the detonation products was assumed to be initiated at CJ 

Pressure and CJ Temperature conditions characteristic of the fuel-oxidizer mixture as part 

of the initial conditions. Mass fraction of the detonation products are obtained from 

NASA Chemical Equilibrium Analysis (CEA) [15] and included in Appendix A. The 

reactant initial conditions were assumed to be at 1 atmosphere and 298 K, which would 

mimic experimental conditions for further validation. 

 

Figure 16. 2-dimensional axisymmetric cylinder model 

 

The model was gridded on the Multipurpose Intelligent Meshing Environment 

(MIME) platform for an unstructured mesh (triangles) topology, which was optimized as 

a pre-processor for CFD++. It would have been ideal to resolve the flow field in terms of 

a structured mesh topology (quadrilaterals) so as to minimize the computational 

workload; however MIME did not have the capability to generate structured grids. An 

illustration of the cylinder model for unstructured mesh topology can be found in Figure 

17.  
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Figure 17. 2-D axisymmetric model (Unstructured mesh size) 

For the implosion study, a modified PDE configuration was conceived based on a 

2-D cylinder model as depicted in Figure 18 with an axi-symmetric axis. This model 

utilizes the concept of implosion with an assumption of a starting detonation wave 

propagating at the inlet. The lead shock front of the detonation wave should be sustained 

by the implosion concept and will not decay to a rarefaction wave as it expands into the 

tube space. Further parametric studies are then conducted by increasing the radius of the 

model until the detonation wave fails, thereby compromising the DDT length that is 

required for such geometric configurations. 

 
Figure 18. Modified implosion PDE configuration 

 

E. SIMULATION PARAMETERS 

The simulation parameters used to perform the grid sensitivity analysis is 

summarized in Table 3. The unsteady compressible Euler equation (no viscosity terms) 

was chosen as the main equation set governing the numerical computations. The 

parameter of interest was to evaluate the thermodynamic parameters and wave speed 

along the symmetry axis so as to capture the detonation wave physics rather than near the 
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walls (where viscous effects become significant). A Total Variation Diminishing (TVD) 

limiter scheme based on the minmod function was used in order to prevent spurious 

oscillation of the resolved flow field in the vicinity of strong gradients, which represent 

shocks.  Near flow field regions where shocks are encountered, they switch the spatial 

discretization scheme to a first order accurate method while second-order accurate 

numerical schemes are computed for the rest of the flow field. 

 

Table 3. Simulation setup on CFD++ platform 

Equation Set Type 
i) Unsteady Compressible Euler 
ii) Equation of State: Ideal Gas 
Riemann Solver 
i) Minimum Dissipation: LHS  & RHS 
ii) Activate Pressure Switch: Supersonic 
iii) Activate Pressure Gradient Normal 
Boundary Conditions (See Figure 17) 
i) Top: Multi-species inviscid surface tangency (Wall) 
ii) Left: Multi-species inviscid surface tangency (Wall) 
iii) Right: Multi-species inviscid surface tangency (Wall) 
iv) Bottom: X-axis symmetry 
Boundary Conditions (See Figure 18) 
i) Inlet: Specified by inlet stagnation temperature, pressure and 

detonation products 
ii) Wall: Multi-species inviscid surface tangency 
iii) Symmetry: X-axis symmetry 
Time Integration 
i) Implicit 
Spatial Discretization 
i) 2nd Order Accuracy in Space 
ii) Dimension of polynomial: 2-D axisymmetric 
iii) Axis stability enhancement: Yes 
iv) Types of Total Variation Diminishing (TVD) Limiter: Minmod 
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IV. DISCUSSION OF RESULTS AND ANALYSIS 

A. INITIAL COMPARISON OF DIFFERENT GRID SIZES 

A grid size from 0.25 mm to 1.0 mm was first considered in the grid sensitivity 

analysis so as to determine a computational mesh size that is sufficiently small enough to 

capture the physics of the detonation wave. The ZND induction length for detonation of 

stoichometric H2-Air mixtures (0.23 mm) was used as a baseline comparison [16]. 

As outlined previously in the PDE configuration description, a detonation wave 

was assumed to propagate at the start with conditions pertaining to C-J pressure and 

temperature obtained from NASA CEA code. This is outlined in Table 4. (Note that the 

initial reactants were assumed to be at Pressure = 1 atm and Temperature = 298K). This 

would mimic experimental conditions for purpose of validation. The single step reaction 

equation is indicated in Table 5. 

 

Table 4. C-J parameters for stoichometric H2-Air mixtures 

φ VCJ 
(m/s) 

TCJ (K) PCJ (MPa) 

1.0 1964.8 2942 1.58 

 

Table 5. Single-step reaction for stoichometric H2-Air mixtures 

φ Reaction 
1.0 H2 + ½(O2 + 3.76N2) -> H2O + 3.76/2N2 

 

An implicit scheme with a fixed time step of 1 nanosecond was first used during 

the initial comparison process. In order to validate the accuracy of the simulation run for 

each computational mesh size, the computed detonation velocity between each time step 

along the symmetry axis was computed using a first order finite difference method and 

compared against the C-J velocity. The C-J velocity is the velocity at which a steady state 

detonation wave propagates, which has been verified in shock tube experiments, as noted 

by Fickett and Davis [17]. 
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1. Computation of Detonation Velocity 

Detonation velocity was determined by noting the location of the shock front in 

the form of a pressure discontinuity along the symmetry axis of the cylinder 

configuration between each subsequent time step as illustrated in Figures 19 and 20.  

 

Figure 19. Pressure contour for H2-Air mixture at 3 microsecond time step 

 

 

Figure 20. Pressure contour for H2-Air mixture at 4 microsecond time step 

Shock Front 

Shock Front 

Symmetry Axis 
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To obtain the wave speed, a five-point stencil first order finite difference method 

[18] as shown in Figure 21 is performed in one-dimension where x represents the spatial 

discretized location of the shock front and t represents the fixed time step pertaining to 

the shock front location. 

 

Figure 21. Schematic of the 5-point stencil method 

 

The detonation wave speed, DETV  is then obtained via: 
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2. Results from Initial Comparison 

Results of the normalized detonation velocity with C-J velocity based on cell 

mesh sizes of 0.25 mm (~ One ZND length), 0.5 mm (~ Two ZND lengths) and 1.0 mm 

(~ Four ZND lengths) for stoichiometric H2-Air mixtures against run distance along the 

symmetry axis of the PDE cylinder is plotted in Figure 22. Convergence plots for each of 

the simulation runs pertaining to each individual mesh size are included in Appendix B to 

verify that the resolved flow field solutions are bounded. 
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Figure 22. Plot of wave velocity/CJ velocity against run distance for different 
mesh sizes 

 

All 3 cell sizes indicate good agreement with the predicted C-J velocity towards 

the end of the PDE cylinder. The detonation waves decay towards the steady state C-J 

velocity at the end where the order of accuracy from the mean C-J velocity ranged from 

3% to 5%. Table 6 gives a statistical summary of the detonation wave velocities in terms 

of the standard deviation and the average normalized detonation wave speeds. This 

clearly implies that for simulation of a fully developed detonation wave propagating at C-

J velocity, the cell sizes are clearly sufficient. However, the specified initial conditions 

were not enough to induce the ‘wave’ transient two-dimensional effects constituting the 

longitudinal and transverse wave interactions that have been observed in PDE detonation 

soot foil imprint experiments. Hence, further grid sensitivity studies were performed with 

the initial detonation wave propagating at temperature and pressure conditions specified 

by Zaev et al [8]. 
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Table 6. Set of evaluation parameters for different mesh sizes  

Mesh Size  
(mm) 

Average 
Detonation 

Wave Velocity 
(m/s) 

Standard Deviation 
of Detonation Wave 

Velocity (m/s) 

Average 
Detonation Wave 

Velocity / CJ 
Velocity 

0.25 (1 ZND Length) 1892.58  70.88  0.96 
0.50 (2 ZND Lengths) 1864.54  77.87  0.95 
1.00 (4 ZND Lengths) 1898.81  175.55  0.97 

 

Also, the computational effort required to complete a simulation run for 0.25 mm 

took 8 days based on an implicit scheme with a fixed time step. To reduce and optimize 

the computational time, an implicit scheme with CFL number equal to one was adopted. 

In order to validate the implicit scheme based on CFL number, the same test case model 

using a mesh size of 0.25 mm was simulated using these two employed schemes and 

shown in Figure 23.  The results indicate good agreement with each other with the 

numerical accuracy not compromised by adopting a different scheme. 

 

 

Figure 23. Plot of wave velocity/CJ velocity against run distance for different 
implicit time schemes 
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B. FURTHER GRID SENSITIVITY ANALYSIS 

Further analysis was performed on cell sizes ranging from 0.25 mm (~ One ZND 

length), 0.0625 mm (~ One-quarter ZND length) and 0.05 mm (~ One-fifth ZND length). 

A plot of the normalized wave speeds along the symmetry axis with the C-J velocity as a 

function of the run distance of the cylinder is shown in Figure 24. Initial conditions for a 

starting detonation wave are specified at a pressure of 3.95 MPa and a temperature of 

2942 K. 

 

 

Figure 24. Plot of wave velocity/CJ velocity against run distance for different 
mesh sizes for Courant number of 1 

 

At a computational mesh size of 0.0625 mm, initial wave transients could be 

observed for an under-driven wave propagating at a sub-CJ speed and increase after a 

small run distance to an over-driven detonation wave before decaying and oscillating 

about the steady state C-J velocity. This clearly shows the transition to detonation or the 

DDT process. Decreasing the cell size from 0.0625 mm to 0.05 mm shows no change in 

the initial transients as well as the decay behavior to the steady state C-J velocity, which 
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allows us to determine that 0.0625 mm would be a practical cell size to capture the 

detonation physics, as well as apply to other fuel-oxidizer mixtures. 

Further insight could also be gained by first analyzing the pressure and 

temperature contours as well as the histories for the given mesh size of 0.0625 mm at the 

mid-point of the cylinder configuration as indicated in Figures 25, 26, 27 and 28 

respectively. 

Behind the shock front, the detonation wave structure comprising of transverse 

wave interactions along with the longitudinal propagating wave front are observed, which 

are clearly multi-dimensional effects for both pressure and temperature contours. The thin 

shock front layer is propagating at a pressure state of 2.4 MPa that is higher than the C-J 

pressure of 1.58 MPa. Just behind the shock front, the detonation wave structure 

approximately 45 mm long comprising of the triple points are close coupled, which is 

fueling the detonation wave process followed by an expansion zone. Similarly, the H2-Air 

mixture reacts at an almost constant C-J temperature condition of 3000 K throughout the 

detonation wave structure zone. 

From the pressure history data, the pressure state for lead shock front relaxes to 

1.0 MPa before increasing back up to 2.0 MPa. The initial decrease is due to the 

interaction of the transverse wave propagating from the side walls and the symmetry axis 

of the cylinder. However, when the triple points intersect, the waves reinforce each other 

and the superposition process increases the localized pressure points. This promotes 

conditions that sustain the propagation of the detonation wave. 
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Figure 25. H2 – Air pressure contour plot at 65 mm 

 

 
Figure 26. H2 – Air pressure history plot at 65 mm 
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Figure 27. H2 – Air temperature contour plot at 65 mm 

 
 

 
Figure 28. H2 – Air temperature history plot at 65 mm 
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The detonation wave is sustained throughout by analyzing the contour and 

histories pertaining to conditions of pressure and temperature at the cylinder end. This is 

illustrated in Figures 29, 30, 31 and 32. The same detonation wave structure closely 

coupled to the shock front is observed with no change in the reaction zone length with a 

larger expansion zone. The lead shock front is propagating at a slightly lower pressure 

state of 2.3 MPa. As before, the pressure decreases before increasing back up to 2.4 MPa 

due to the interaction of the wave transients.  The reaction zone conditions are 

approximately constant at 3000 K.  

One interesting feature to take note is when the detonation wave structure is 

closely analyzed, as shown in Figure 33, the detonation cell width, which characterizes 

the triple point intersection of the mach stem, incident shock and reflected shock is 

approximately 8 mm, which was taken to be the largest cell size since the detonation cell 

width is irregular in nature. This coincides with experimental observations as predicted in 

Figure 15.  

 

 

Figure 29. H2 – Air pressure contour plot at 122 mm 
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Figure 30. H2–Air pressure history plot at 122 mm 

 

 
Figure 31. H2 – Air temperature contour plot at 122 mm 
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Figure 32. H2 – Air temperature history plot at 122 mm 

 

 

Figure 33. Close-up view of detonation wave structure 

8 mm 
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 This concludes the grid sensitivity analysis and establishes that the cell size of 

0.0625 mm (~ one-quarter induction length) is sufficient to capture the detonation wave 

physics in a PDE cylinder configuration. The same computational cell size will be used in 

subsequent simulations with a modified configuration for analysis of axi-symmetric 

toroidal implosions. 

C. IMPLOSION ANALYSIS 

Using the modified PDE configuration illustrated in Figure 18, a detonation wave 

was assumed to propagate at the inlet with stagnation pressure and temperature equal to 

3.95 MPa and 2942 K with the detonation products obtained from NASA CEA. The 

reactant conditions were specified to be at an initial pressure of 1 atm and temperature of 

298 K. This was similar to the conditions simulated for the grid sensitivity analysis. The 

cell size used was 0.0625 mm as determined previously, which was required to capture 

the complex flow field governing the shock physics. The same test case model for 

stoichiometric reaction of H2-Air mixture assuming a chemical kinetic reaction setup of 

18 reactions and 9 species listed in Table 2 was used for the implosion analysis.  

In order to determine whether the propagating detonation wave can be sustained 

by the implosion process, the detonation velocity was evaluated along the mid-axis of the 

inlet (which would be the center of the implosion event) and along the symmetry axis of 

the shock tube configuration as shown in Figure 34. The resultant detonation velocity was 

compared against the C-J velocity to see if the wave can persist as a detonation wave. 

Therefore, the corresponding analysis are decoupled into two portions, the first pertaining 

to the mid-axis inlet (implosion) and the second pertaining to the symmetry axis. 
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Figure 34. Evaluation of C-J wave speed for implosion study 

 

1. Implosion Along the Mid-axis Inlet 

Results of the normalized detonation wave velocity to C-J velocity versus run 

distance along the mid-axis of the inlet were plotted in Figure 35. From the graph, the 

detonation wave velocity decreases initially up to a run distance of 15 mm (~ 0.4 of the 

total radius) below C-J velocity as it travels along the radial direction towards the 

symmetry axis. This can be attributed to rarefaction effects as the detonation wave starts 

to expand from the inlet entrance. This can explicitly illustrated from the respective 

snapshot pressure and temperature contours in Figures 36 and 37 for the imploding wave 

at a run distance of 10 mm. From Figure 36, there is an expansion zone whereby the 

starting detonation wave decreases in pressure from specified inlet stagnation conditions 

along the inlet axis all the way to the reaction zone attached to the lead shock front that is 

propagating at the wave velocity. This reaction zone is a region of compression where the 

pressures start to build up fueled by the chemical reaction of the fuel-oxidizer mixture. 

Notice that this zone is localized only at the tip of the spherical wave front due to the 

nature of the toroidal imploding geometry and is a typical example of a shock focusing 

technique. There is a large high temperature region approximately equal to C-J 

temperature throughout the spherical shock wave except for the region immediately to the 

left and right of the inlet entrance whereby no communication exists between the flow 

field within the shock and reactant conditions. The observed high temperature region is 

supported by the heat release due to the reaction of the fuel-oxidizer mixture due to the 
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interaction of the multi-dimensional wave structure as the shock front implodes towards 

the symmetry axis. The pressures, temperatures as well as the kinetic chemical reaction 

rates are clearly driving the spherical wave front.  

 

 

Figure 35. Plot of wave velocity/CJ velocity against tube radius along mid-axis of 
inlet 
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Figure 36. Pressure contour for imploding geometry at run distance of 10 mm 

along inlet axis 

 

 
Figure 37. Temperature contour for imploding geometry at run distance of 10 

mm along inlet axis 
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As the wave propagates beyond 15 mm towards the symmetry axis, the wave 

velocity starts to increase back upwards towards C-J velocity by virtue of the imploding 

geometry. This illustrates the fact that the detonation wave is continuously supported by 

the shock focusing process that can be determined from the C-J velocity. The pressure 

and temperature contours corresponding to a run distance of 20 mm are illustrated in 

Figures 38 and 39 respectively. The spherical wave front from the previous run distance 

of 10 mm has now transformed into little spherical wavelets coalescing into the leading 

edge of the detonation wave. This is due to little compression waves that are accelerated 

due to generation of heat release from the reaction of the fuel-oxidizer mixture. This heat 

release form high temperature regions that increases the sonic velocity of the gas 

products tries to catch up with the leading edge of the shock front. Also, extremely high 

localized pressure regions denoted by tiny red regions are also observed at the leading 

edge that is at least a factor of two greater than the C-J pressure. A look at the 

temperature contour reveals an interesting phenomenon, where transverse wave 

interactions are observed from these spherical wavelets at the protruding edge of the lead 

shock front extending for a distance of 10 mm along the mid-axis inlet as shown in the 

close-up view for the same temperature contour in Figure 40. There is also an extremely 

thin region separating the ambient temperature from the high temperature region – 

characteristic of a shock leading front. Further away from the mid-axis of the inlet on 

both sides, the thickness of this region increases, which indicates that the reactions are 

falling behind the shock front, and the detonation process is decaying due to expansion 

effects. 
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Figure 38. Pressure contour for imploding geometry at run distance of 20 mm 
along inlet axis 

 

 
Figure 39. Temperature contour for imploding geometry at run distance of 20 

mm along inlet axis 
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Figure 40. Close-up view of temperature contour  

 

The pressure and temperature history plots along the mid-axis inlet are used to 

quantify the high pressures and temperatures driving the imploding wave as shown in 

Figures 41 and 42. The lead shock front is propagating at a pressure of 2.5 MPa, which 

essentially represents an overdriven detonation wave. Immediately behind the shock 

front, the pressure drops drastically to 1.2 MPa followed by a constant pressure region 

approximately 8 mm thick. As for the temperature at the leading edge, it increases slowly 

from 2500 K in an oscillating manner to almost 2900 K, which equals approximately to 

CJ temperature before spiraling downwards to 2000 K. This spiraling behavior is due to a 

huge expansion effect where the pressure decreases from the constant pressure region to 

ambient pressure conditions. 
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Figure 41. Pressure history of imploding wave at run distance of 20 mm along 
inlet axis 

 

Figure 42. Temperature history of imploding wave at run distance of 20 mm 
along inlet axis 
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 As the wave continues to implode towards the symmetry axis, the localized high 

pressure region attached to the shock front expand radially outwards with the wave at a 

run distance of 38 mm, which is almost the radius of the PDE tube configuration as 

shown in Figure 43. The pressure history in Figure 44 verifies the fact that the pressure 

continuously increases beyond the C-J pressure to 3.5 MPa and this further reinforces and 

builds up the detonation wave speed. Similarly, the expansion wave region thickness 

increases as the high pressure relieves itself to 0.9 MPa before a sharp decrease to 

ambient pressure conditions.  This indicates that a second shock front is formed in front 

of a set of supersonic jets of products leaving the inlet region and entering the detonation 

tube.  This phenomenon will be treated robustly in future endeavors. 

 

 

Figure 43. Pressure contour for imploding geometry at run distance of 38 mm 
along inlet axis 
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Figure 44. Pressure history of imploding wave at run distance of 38 mm along 

inlet axis 

 Similar to the observed pressures, there is a radial expansion of the high 

temperature region corresponding to approximately C-J temperature outwards from the 

inlet mid-axis as illustrated in the pressure contour of Figure 45. The temperature history 

plot shows an almost constant temperature region of 2900 K extending from the shock 

front to a thickness of 20 mm, which is almost half the radius of the PDE tube. 

 Analyzing the entire propagation of the toroidal wave front motion proves that 

even though the detonation wave initially loses its speed due to sudden expansion effects, 

the implosion process coupled with the reaction of the fuel-oxidizer mixture strengthens 

and increases the wave velocity as it propagates towards the symmetry axis. The pressure 

state just before the symmetry also shows that the initial wave builds up to an overdriven 

detonation shock wave propagating by a factor of 2.2 of the C-J pressure due to the 

implosion process.   
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Figure 45. Temperature contour for imploding geometry at run distance of 38 

mm along inlet axis 

 

 
Figure 46. Temperature history for imploding geometry at run distance of 38 

mm along inlet axis 
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2. Implosion Analysis Along Symmetry Axis 

 Looking at the passage of the shock front along the symmetry axis, it starts out at 

a highly overdriven state with a wave velocity propagating by a factor of 1.8 times the C-

J velocity. This is a highly transient state that will eventually decay to the steady state C-J 

velocity as the wave propagates along the symmetry axis towards the end of the PDE 

configuration. This is shown in Figure 47. Note that the shock wave passage starts out at 

a run distance of 23 mm along the symmetry axis due to the implosion process at the 

mid-axis inlet. The first two run distance points are also discarded due to the 

implementation of the five point stencil finite difference method used to determine the 

wave velocity. 

 

 

Figure 47. Plot of wave velocity/CJ velocity against run distance along symmetry 
axis 

  

 The snap shot pressure and temperature contours in Figures 48 and 49 denoting 

the point just after impact of the implosion process at a run distance of 23 mm along the 
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symmetry axis indicates extremely high localized pressure and temperature regions just 

aft of the shock front. The multi-dimensional effects of the wave interactions are 

explicitly observed in the temperature contour. The pressure and temperature history 

evaluated along the symmetry axis in Figures 50 and 51 allows for quantification of the 

pressure and temperature states arising from the collision of the two implosion shock 

waves. The localized pressure state along the symmetry axis increased to as high as 6.4 

MPa with the corresponding temperature at 3700 K. In comparison to the characteristic 

CJ pressure, this is on the order of at least 4 times greater and the detonation wave is 

highly sustained by the implosion.  

  

 
Figure 48. Pressure contour for imploding geometry at run distance of 23 mm 

along symmetry axis 
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Figure 49. Temperature contour for imploding geometry at run distance of 23 

mm along symmetry axis 

 

 
Figure 50. Pressure history of imploding wave at run distance of 23 mm along 

symmetry axis 
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Figure 51. Temperature history of imploding wave at run distance of 23 mm 

along symmetry axis 

 

 As the detonation wave front propagates along the symmetry axis to a run 

distance of 50 mm as shown in the pressure and temperature contours of Figures 52 and 

53, it catches up with the spherical wave front extending from the symmetry length to the 

wall of the tube configuration. The thin region behind the spherical wave is still clearly 

being driven by the reaction process as it stays attached to the shock front above C-J 

pressure and temperature while the region along the symmetry axis are propagating at 

extremely high overdriven pressures and temperatures fueled by the collision of the 

imploding shocks. The pressure and temperature history plots along the symmetry axis in 

Figures 54 and 55 verifies this with the lead shock front at a pressure and temperature 

state as high as 6.0 MPa and 4000 K respectively. 
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Figure 52. Pressure contour for imploding geometry at run distance of 50 mm 

along symmetry axis 

 

 
Figure 53. Temperature contour for imploding geometry at run distance of 50 

mm along symmetry axis 
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Figure 54. Pressure history of imploding wave at run distance of 50 mm along 

symmetry axis 

 

 
Figure 55. Temperature history of imploding wave at run distance of 50 mm 

along symmetry axis 
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 At a run distance of 98 mm towards the end of the tube, the pressure and 

temperature contours of Figures 56 and 57 depicts the merging of the two separate waves 

into an almost planar wave front propagating at C-J velocity. The localized high pressure 

region stays highly attached to the shock front followed by an expansion region. A triple 

point discontinuity can be observed further upstream of the expansion region denoting the 

interaction of the longitudinal and transverse wave from the confined walls of the shock 

tube. The pressure and temperature states along the symmetry axis pertaining to the 

leading edge of the shock front are still at 2.0 MPa and 3000 K respectively from Figures 

58 and 59 above C-J conditions, which highlight the fact that a detonation wave still 

persists and will continue to propagate along the length of the tube. 

    

 
Figure 56. Pressure contour for imploding geometry at run distance of 98 mm 

along symmetry axis 
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Figure 57. Temperature contour for imploding geometry at run distance of 98 

mm along symmetry axis 

 

 
Figure 58. Pressure history of imploding wave at run distance of 98 mm along 

symmetry axis 



 58

 
Figure 59. Temperature history of imploding wave at run distance of 98 mm 

along symmetry axis 

 
 Analysis of the implosion process along both the mid-axis of the inlet and 

symmetry axis points to the fact that a detonation shock wave persists almost throughout 

the entire geometry and is sustained both by the imploding wave front. This highlights 

the potential of introducing a toroidal implosion process for PDE type applications and 

allows for larger diameters to be factored into such configuration designs such that 

shorter tube lengths can be factored in without the need to account for DDT run 

distances. Subsequently, a parametric study will be conducted to evaluate exactly the 

extent of the diameter increase such that a detonation shock wave can be sustained for 

such designs.  

D. PARAMETRIC STUDY 

Parametric studies were performed on tube diameters of 114.3 mm and 133.35 

mm respectively with the same inlet, reactant and boundary conditions specified for the 

toroidal implosion analysis. Note that the previous tube diameter of 76.2 mm from the 

implosion analysis was included as part of the parametric study. Current computational 
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resources could not support further exploration of tube diameters beyond 133.35 mm due 

to huge computational demands required and this could potentially take months to 

compute depending on the test case model. For the study, geometry of the shock tube as 

shown in Figure 18 remained the same with the exception of the diameter. The wave 

velocity was similarly evaluated along the mid-inlet and symmetry axis to determine if 

the detonation wave can be sustained. 

1. Parametric Analysis Along Mid-inlet Axis 

Figure 60 illustrates the detonation wave velocity as a function of the implosion 

shock tube radius for the different diameters specified along the mid-inlet axis. 

 

 

Figure 60. Plot of wave velocity/CJ Velocity against tube radius along inlet axis 
for different imploding shock tube diameters 

 
 As the tube diameter increases, the detonation wave velocity starts out lower as 

under-driven detonations due to decreased confinement effects. An analysis of the 

pressure and temperature contours for diameters of 114.3 mm and 133.35 mm as the 
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imploding wave propagates mid-way through the radius of the tube shows lower pressure 

and temperature states behind the lead shock front as compared to the diameter of 76.2 

mm. Figures 61 and 62 illustrates the pressure and temperature contours for 114.3 mm. 

Figures 63 and 63 illustrates the pressure and temperature contours for 133.35 mm. 

 

 

Figure 61. Pressure contour for imploding geometry at run distance of 28.75 mm 
for tube diameter of 114.30 mm along inlet axis 
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Figure 62. Temperature contour for imploding geometry at run distance of 28.75 

mm for tube diameter of 114.30 mm along inlet axis 

 

 
Figure 63. Pressure contour for imploding geometry at run distance of 33.34 mm 

for tube diameter of 133.35 mm along inlet axis 
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Figure 64. Temperature contour for imploding geometry at run distance of 33.34 

mm for tube diameter of 133.35 mm along inlet axis 

 
 For the tube diameter pertaining to 114.30 mm, the phenomena corresponding to 

the coalescence of tiny spherical wavelets representing localized high pressure regions at 

the leading edge of the toroidal wave front could be observed similar to the implosion 

analysis. However the pressure states in these localized regions were lower in comparison 

due to geometrical differences in diameter. Similarly in comparison to the temperature 

contour for the implosion analysis, there is a thin separation region between the reactant 

conditions and the high temperature region at the toroidal front with an increasing 

thickness further away on both sides of the mid-axis inlet indicating a decaying 

detonation process due to expansion effects. These effects are however greater as 

compared to the test case model for 76.2 mm used for the implosion analysis and this 

again is a function of the diameter increase. This would account for the lower detonation 

velocities observed as the tube diameter is increased from 76.2 mm to 114.30 mm. 

 For the case study of 133.35 mm, the pressure contour indicates a weak decaying 

wave propagating mid-way towards the symmetry axis. The pressure region behind the 

decaying shock front is almost at a uniformly low pressure with a magnitude of 
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approximately half of CJ pressure. However due to the geometry of the imploding tube, a 

second reflection wave from the head end of the tube can be observed interacting in a 

direction perpendicular to the weak wave propagation along the mid-inlet axis. This 

reflection wave represents a strong detonation wave with localized pressure regions just 

behind the toroidal wave front starting from the head end exceeding two times of C-J 

pressure. Likewise, as for the temperature contour, there exists a thick uniform region of 

separation between the reactant temperature and high temperature region along the 

toroidal wave front with an interacting reflection wave from the shock tube head end. The 

weaker pressure and temperature states behind the decaying shock front account for even 

lower detonation velocities as compared to the tube diameter corresponding to 114.30 

mm. 

 As the wave implodes towards the symmetry axis, the process fueling the lead 

shock front is not supported and continues to weaken and decay due to expansion effects 

with the exception of the test case pertaining to 133.35 mm. The second reflected wave 

from the head end along the symmetry axis reaches interacts with the transverse wave 

propagation along the mid-inlet axis, which reinforces the lead shock front and results in 

a sharp increase in detonation velocity towards 0.8 of C-J velocity as shown in Figure 60. 

The respective pressure and temperature contours in Figures 65 to 66 and 67 to 68 

corresponding to the test case of 114.30 mm and 133.35 mm illustrate the observed wave 

propagation behavior as the shock front implodes towards the symmetry axis.   
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Figure 65. Pressure contour for imploding geometry at run distance of 52 mm 

for tube diameter of 114.30 mm along inlet axis 

 

 

Figure 66. Temperature contour for imploding geometry at run distance of 52 
mm for tube diameter of 114.30 mm along inlet axis 
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Figure 67. Pressure contour for imploding geometry at run distance of 62 mm 

for tube diameter of 133.35 mm along inlet axis 

 

 
Figure 68. Temperature contour for imploding geometry at run distance of 62 

mm for tube diameter of 133.35 mm along inlet axis 
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2. Parametric Analysis Along Symmetry Axis 

Along the symmetry axis, the detonation process is supported throughout as all 3 

test cases pertaining to different tube diameter geometries is observed to start from an 

overdriven detonation wave before decaying to a steady state wave propagating towards 

C-J velocity. A plot of the normalized wave velocity to C-J velocity against run distance 

along symmetry axis in Figure 69 depicts the observed wave propagation behavior. 

 

 

Figure 69. Plot of wave velocity/CJ Velocity against run distance along symmetry 
axis for different imploding shock tube diameters 

 

 The test case pertaining to tube diameter of 114.3 mm starts out immediately at 60 

mm along the symmetry axis as the geometry of the wave front along the radial direction 

is such that at the point of implosion is almost planar throughout till the start point. The 

implosion process along the wave propagation drives the pressure and temperature along 

the symmetry plane to exceedingly high values to almost 50 times C-J pressure as shown 

in the pressure and temperature history of the starting wave at run distance of 60 mm as 
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illustrated in Figures 70 and 71. This causes a sharp increase in C-J velocity to almost 1.7 

of C-J velocity, which causes the detonation wave to start out overdriven. There is also a 

second reflected wave from the head end of the tube, which is propagating behind the 

starting wave as shown in the pressure contour in Figure 72. 

 

 

Figure 70. Pressure history of imploding wave at run distance of 60 mm along 
symmetry axis (diameter 114.3 mm) 
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Figure 71. Temperature history of imploding wave at run distance of 60 mm 

along symmetry axis (diameter 114.3 mm) 

 
Figure 72. Pressure contour for imploding geometry at run distance of 60 mm 

for tube diameter of 114.3 mm along symmetry axis 
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 The detonation process is supported throughout the symmetry axis as both 

pressure and temperature states decay towards C-J conditions. Even as the wave approach 

towards the end of the tube at a run distance of 91 mm, the pressure and temperature 

states at the 1-D lead shock front along the symmetry axis as denoted by the respective 

temperature and pressure histories in Figures 73 and 74 are still above C-J conditions. 

This clearly indicates that the detonation propagation process is still supported. In 2-D, 

the pressure contour in Figure 75 at a run distance of 91 mm illustrates a non-planar 

shock front followed by a closely coupled high pressure region. In this region along the 

transverse direction, the pressure decreases further away from the symmetry axis before 

increasing again towards the wall of the shock tube.   Although there is a decrease of 

pressure in the transverse direction, the states in this closely coupled are still above C-J 

conditions, which highlights the potential of increasing the diameter of the tube even 

further and still maintain sustenance of the detonation wave. 

 

Figure 73. Pressure history of imploding wave at run distance of 91 mm along 
symmetry axis (diameter 114.3 mm) 
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Figure 74. Temperature history of imploding wave at run distance of 91 mm 

along symmetry axis (diameter 114.3 mm) 

 

 
Figure 75. Pressure contour for imploding geometry at run distance of 91 mm 

for tube diameter of 114.3 mm along symmetry axis 
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 For the test case pertaining to the tube diameter of 133.35 mm, there are 2 

mechanisms sustaining the detonation wave propagation. The first mechanism is due to 

the reflection of the secondary wave from the head end of the shock tube while the 

second mechanism is due to the implosion process itself. At implosion, the wave starts 

out overdriven with pressure and temperature states behind the lead shock front way 

above C-J conditions. For the specified geometry, the secondary reflected wave merges 

with the transverse imploded wave, which magnifies the pressures and temperatures 

behind the lead shock front. This can be observed in the pressure and temperature 

histories of the wave propagation evaluated along the symmetry axis at a run distance of 

30 mm in Figures 76 and 77, which reaches 32.5 MPa (~20 times C-J pressure) and 5000 

K (~ 1.7 times C-J temperature). The same 2-D pressure contour in Figure 78 illustrates 

an observed two distinct wave structure phenomena, a detonation wave that is 

propagating at super C-J velocity and a weak decaying wave that is remnant of the 

previous toroidal wave front that is slowing down due to expansion effects. 

 

 
Figure 76. Pressure history of imploding wave at run distance of 30 mm along 

symmetry axis (diameter 133.35 mm) 
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Figure 77. Temperature history of imploding wave at run distance of 30 mm 

along symmetry axis (diameter 133.35 mm) 

 

Figure 78. Pressure contour for imploding geometry at run distance of 30 mm 
for tube diameter of 133.35 mm along symmetry axis 
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 The super detonation wave travelling along the symmetry axis will eventually 

catch up and overtake the weak expansion toroidal wave front. This is illustrated in the 

pressure contour in Figure 79 as the wave approaches the end of the shock tube length at 

a run distance of 88 mm. The super detonation wave also expands towards the walls 

eventually replacing the weak expansion wave front as it propagates further along the 

symmetry axis. 

 

 

Figure 79. Pressure contour for imploding geometry at run distance of 88 mm 
for tube diameter of 133.35 mm along symmetry axis 

 The 1-D pressure and temperature histories of the same wave along the symmetry 

axis in Figures 80 and 81 still shows the detonation wave being supported even as it 

propagates towards the tube end. Here the C-J pressure and temperature states just behind 

the lead shock front are still at 4.0 MPa(~ 2.5 C-J pressure) and 3200 K (~ 1.1 C-J 

temperature), which will eventually decay to steady-state CJ velocity.  
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Figure 80. Pressure history of imploding wave at run distance of 88 mm along 
symmetry axis (diameter 133.35 mm) 

 

Figure 81. Temperature history of imploding wave at run distance of 88 mm 
along symmetry axis (diameter 133.35 mm) 
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 The parametric study highlights the immense potential of utilizing a shock 

focusing technique such as toroidal implosion to increase specific thrust in pulse 

detonation engines with no requirements to factor in tube length for DDT transitions as 

the diameter of the tube is further increased. Even when the diameter was increased to 

beyond 1.5 times the original length, the detonation process was still supported 

throughout as shown by the simulation results. The mechanisms supporting the 

detonation process was due to the implosion process itself as well as the secondary 

reflection wave from the tube head end. It would have been ideal to obtain the optimal 

tube diameter at which the implosion process fails to support the detonation process; 

however it was not possible to go beyond the tube diameter of 133.35 mm due to the 

limitation of the available computational resources. A two-fold increase in tube diameter 

results in a four-fold increase in required computational resource due to the number of 

mesh size. It is evident from the outcome of the parametric study that diameters way 

beyond 133.35 mm is possible to support the detonation process due to the simultaneous 

interaction and reinforcement of not only the implosion process itself, but also 

supplemented by the secondary reflection wave from the head end of the tube. 
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V. WAY FORWARD AND RECOMMENDATIONS 

 Steps to conduct further parametric studies to determine the optimal diameter 

such that detonation process can be supported will be addressed in future endeavors. The 

specialized CFD solver from Metacomp Technologies requires extensive parallel node-

to-node communications based on the computational cell size required to capture the 

complex physics governing the shock wave propagation process. This results in latency 

issues that contribute to substantial computational downtime whereby current 

supercomputing architecture on campus using infiniband interconnects is unable to 

support. Subsequent studies will be ported over to a high performance computing 

architecture off-campus with minimal latency and as such simulation time can be 

drastically reduced in order to allow for reasonable time for analysis of results. 

 Additionally, it is desired not only to maximize the tube diameter based on the given 

geometry, but also the location of the inlet for the starting toroidal wave front. The location 

of the inlet from the head tube end will not only optimize the imploding detonation wave 

towards the symmetry axis but also optimizes the secondary reflected wave as it catches up 

with the toroidal wave front and aids as a supplementary mechanism to support the 

detonation wave propagation throughout the shock tube along the symmetry axis. 

 Once the optimal configuration geometry has been established for imploding 

detonations for hydrogen-air, future endeavors will also address test cases for 

hydrocarbon fuels such as ethylene-air and JP10-air. Moreover, optimal tube geometries 

can be further determined by using the practical computational cell size established for 

this thesis study as well as a set of viable reduced set of chemical kinetic reaction models 

specific to these fuel-oxidizer mixtures. Note that JP10 is a military qualified jet aviation 

fuel that due to its high energy density represents the best realizable fuel of choice for 

PDE applications. 

 The future should focus on building an experimental test rig based on the 

imploding geometry to not only validate the simulation results, but in the process allow 

for a paradigm shift in future PDE designs that need not factor in multiple tube 

configurations and as such maximizing specific thrust. 
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VI. CONCLUSION 

 A novel method to increase specific thrust in PDEs via imploding detonations has 

been investigated in this study. High fidelity simulations were required in order to capture 

the physics governing such complex flow fields. In this study, a practical computational 

mesh size on the order of one-quarter induction length was determined and deemed 

sufficient based on a reduced set of 18 reactions and 9 species chemical reaction model 

for hydrogen-air mixture. It was also found that the corresponding computed detonation 

cell width coincided with actual experimental data for the same fuel-oxidizer mixture. 

 A set of simulations were carried out on an enhanced PDE design configuration 

utilizing implosion concepts and results indicate that the detonation wave was supported 

with pressure and temperature states persisting above CJ conditions behind the lead shock 

front throughout the entire geometry. Further parametric studies were conducted to 

evaluate and determine the extent of diameter increase for such design configurations and 

it was found that the detonation propagation process was still well supported even up to 

1.75 times the original diameter. This represents a three-fold increase in thrust per PDE 

tube, which roughly translates into a two-fold increase in specific thrust for similar total 

thrust PDE systems. However, there is a need to evaluate much bigger diameters. Due to 

the limitations of current parallel computing architecture, future endeavors will be 

addressed by using the Department of Defense (DoD) High Performance Computing 

systems that consists of a parallel computing platform with minimal latency in order 

determine the maximum diameter at which the detonation structure fails to persist in the 

specified geometry.  
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APPENDIX A: NASA CHEMICAL EQUILIBRIUM ANALYSIS 
OUTPUT 

 
 
 
         NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA2, FEBRUARY 5, 2004 
                   BY  BONNIE MCBRIDE AND SANFORD GORDON 
      REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996 
 
 
***********************************************************************
******** 
 
 output massf 
 prob case=00002142 det 
 phi=1 
   
 p(atm)=1 
 output short 
 output trace=1e-10 
   
 reac 
 oxid  Air  t,k= 298 wt%=  100. 
 fuel  H2  t,k= 298 wt%=  100. 
 end 
 
                     DETONATION PROPERTIES OF AN IDEAL REACTING GAS 
 CASE = 00002142        
 
             REACTANT                    WT FRACTION      ENERGY      
TEMP 
                                          (SEE NOTE)     KJ/KG-MOL      
K   
 OXIDANT     Air                          1.0000000      -129.895    
298.000 
 FUEL        H2                           1.0000000        -4.325    
298.000 
 
 O/F=   34.29623  %FUEL=  2.833164  R,EQ.RATIO= 1.000000  PHI,EQ.RATIO= 
1.000000 
 
 UNBURNED GAS 
 
 P1, BAR           1.0132 
 T1, K             298.00 
 H1, KJ/KG          -4.36 
 M1, (1/n)         21.008 
 GAMMA1            1.4015 
 SON VEL1,M/SEC     406.6 
 
 BURNED GAS 
 



 82

 P, BAR            15.801 
 T, K             2943.63 
 RHO, KG/CU M    1.5500 0 
 H, KJ/KG         1333.33 
 U, KJ/KG          313.90 
 G, KJ/KG        -29833.7 
 S, KJ/(KG)(K)    10.5880 
 
 M, (1/n)          24.008 
 (dLV/dLP)t      -1.00954 
 (dLV/dLT)p        1.2062 
 Cp, KJ/(KG)(K)    3.3542 
 GAMMAs            1.1637 
 SON VEL,M/SEC     1089.2 
 
 DETONATION PARAMETERS 
 
 P/P1              15.595 
 T/T1               9.878 
 M/M1              1.1428 
 RHO/RHO1          1.8042 
 DET MACH NUMBER   4.8335 
 DET VEL,M/SEC     1965.1 
 
 MASS FRACTIONS 
 
 *Ar             1.2550-2 
 *CO             1.3093-4 
 *CO2            2.6525-4 
 COOH            2.6149-9 
 *H              2.4760-4 
 HCO             1.0225-9 
 HNCO            2.395-10 
 HNO             3.1235-6 
 HNO2            8.9839-7 
 HNO3            1.028-10 
 HO2             1.5250-5 
 *H2             2.6254-3 
 HCOOH           3.735-10 
 H2O             2.2035-1 
 H2O2            2.3080-6 
 *N              1.1146-6 
 *NH             4.5040-7 
 NH2             2.7000-7 
 NH3             3.4969-7 
 NH2OH           4.217-10 
 *NO             9.4235-3 
 NO2             6.6339-6 
 *N2             7.2938-1 
 N2O             2.7711-6 
 *O              1.3571-3 
 *OH             1.3522-2 
 *O2             1.0117-2 
 O3              6.2078-9 
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  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K 
 
 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL 
OXIDANTS 
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APPENDIX B: CONVERGENCE PLOTS FOR RESIDUAL ERRORS 

A. GLOBAL RESIDUAL ERROR PLOT FOR MESH SIZE OF 0.25 MM 

 

B. INNER RESIDUAL ERROR PLOT FOR MESH SIZE OF 0.25 MM 
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C. GLOBAL RESIDUAL ERROR PLOT FOR MESH SIZE OF 0.50 MM 

 

D. INNER RESIDUAL ERROR PLOT FOR MESH SIZE OF 0.50 MM 
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E. GLOBAL RESIDUAL ERROR PLOT FOR MESH SIZE OF 1.00 MM 

 

F. INNER RESIDUAL ERROR PLOT FOR MESH SIZE OF 1.00 MM 
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G. GLOBAL RESIDUAL ERROR PLOT FOR MESH SIZE OF 0.0625 MM 

 

H. INNER RESIDUAL ERROR PLOT FOR MESH SIZE OF 0.0625 MM 
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I. GLOBAL RESIDUAL ERROR PLOT FOR MESH SIZE OF 0.05 MM 

 

J. INNER RESIDUAL ERROR PLOT FOR MESH SIZE OF 0.05 MM 
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K. GLOBAL RESIDUAL ERROR PLOT FOR IMPLOSION (76.2 MM) 

 
 

L. INNER RESIDUAL ERROR PLOT FOR IMPLOSION (76.2 MM) 
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M. GLOBAL RESIDUAL ERROR PLOT FOR IMPLOSION (114.30 MM) 

 
 

N. INNER RESIDUAL ERROR PLOT FOR IMPLOSION (114.30 MM) 
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O. GLOBAL RESIDUAL ERROR PLOT FOR IMPLOSION (133.35 MM) 

 
 

P. INNER RESIDUAL ERROR PLOT FOR IMPLOSION (133.35 MM) 
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